
OpenMath C++ Library
13/11/1999

A Standard OpenMath C++ Library

Summary

Package
Installation
Content
Bug reports

Package

Requirements

OpenMath C library from INRIA
Standard C++ compliance with STL and exceptions (egcs 2.9x at least)

Files system hierarchy

The whole hierarchy (described below) is contained in the OMCPPvXXX directory.

README.html
README.ps
README.pdf

this readme file

LICENSE the licence information

src/ the sources files

src/*.h ; *.cpp C++ files

src/Makefile the make file

doc/ the API documentation

doc/index.html the html index of the
API documentation

Installation

Step 1

Uncompress the file OMCPPvXXX.tgz by typing the following command:

tar zxf OMCPPvXXX.tgz
This will create a new directory OMCPPvXXX/ containing the whole library hierarchy described
above.

Step 2

Set the environment variable OMCDIR to indicate what is the directory containing the OpenMath C
library:
OMCDIR=the main directory for the OpenMath C library (example:
OMCDIR=/root/OpenMath/OMC)
export OMCDIR
You are encouraged to write these two lines above in your .bashrc or /etc/profile.local or
any other initialization file to make the changes persistent.

Step 3

Go to the src/ subdirectory then compile the OpenMath C++ library by typing the following:
cd OMCPPvXXX/src
make clean
make

Remarks

Some tests may be automatically executed at the end of make.
The installation should be terminated with the file libOMCPP.a and the pipe executable as a sample
application.

Content

Conventions

A unique header file gives access to the whole library, namely "OmHeaders.h".
All the public classes begin with the "Om" prefix.
Errors from the C library as well as the C++ library are handled by the class OmException.

The low structured level

The lowest level of feature provides a very light and direct encapsulation of the basic OpenMath C
library. Here is:

You can read OpenMath tokens through the OmInputDevice class.
You can write OpenMath tokens through the OmOutputDevice class.
You can use IO physical streams (files or strings) through the OmStream class, which is
specialized in OmInputFileStream, OmInputStringStream, OmOutputFileStream,
OmOutputStringStream.

Remarks:

The OmInputDevice and OmOutputDevice corresponds to the OMdev structure in the C library.

The OmStream corresponds to the OMIO structure in the C library.

The high structured level

The highest level of feature provides a structured object model to define and manipulate OpenMath
objects as tree nodes.

There are two kinds of nodes specialized from OmNode:

Leaves specialized from OmFinalNode which correspond to the basic OpenMath objects with
no children:
-> standard BigInteger, ByteArray, Float, Integer, PInstruction, String,
WString, Symbol, Variable

Nodes which correspond to the compound OpenMath objects and can have children (however
some constraint rules may apply):
-> standard Application, Binding, Error
-> library specific Object, Document

The OpenMath attributions as defined in the Standard are provided here as lists of attributes
associated to OmNode objects. Thus there is no specific class to represent attributions, the user
simply append/remove attributes pairs (symbol,value) through the OmNode interface.

To take comments into account, the (non perfect) choice has been made to associate a list of
comments to each OmNode object. By convention, comments are considered to be located before the
object while parsing or printing OpenMath files. If this constraint of prefixing is not respected, then
some loss of comments may be observed. For critical cases about perfect parsing of comments the
low structured level may be preferable.

There exists three main operations on OmNode objects:

You can read structured OpenMath objects by using the OmNode::resurrect method.
You can write structured OpenMath objects by using the OmNode::hibernate method.
You can collect comments by using the OmCommentCollector class.

Note that resurrect cannot parse comments as objects because they are distinct from structured
OpenMath objects. However, comments inside an object are implicitely parsed by resurrect. In
general, you must collect comments with OmCommentCollector before calling resurrect, and then
you associate the collected comments to the resurrected object.

Bug reports

For comments, suggestions and bug reports email to cmagnani@acm.org

